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ABSTRACT

Problems on the identification of two dimensional spatial domains arising in the detection

and characterization of structural flaws in materials are considered. For a thermal diffusion

system with external boundary input, observations of the temperature on the surface are used

in a output least square approach. Parameter estimation techniques based on the "method of

mappings" are discussed and approximation schemes are developed based on a finite element

Galerkin approach. Theoretical convergence results for computational techniques are given

and the results are applied to experimental data for the identification of flaws in thermal

testing of materials.
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I. INTRODUCTION

Domain identification problems are important in engineering design and frequently, such

problems are treated as a branch of the calculus of variations. Discussions usually involve

nonlinear optimization techniques, optimal control theory, partial differential equations and

related numerical algorithms. Domain identification for elliptic systems has been studied

theoretically and numerically by many authors ( for example, see [5], [8],[16], [17],[18] ).

Most efforts have been concentrated on problems of optimal shape design which are moti-

vated by numerous applications to structural, airplane, ship design, etc. ( see [17] and the

references therein ). In this paper, our concern for domain identification is motivated by

an application that differs somewhat from these shape design problems. Recently, in space

structures studies, fiber reinforced composite materials have been widely proposed and, as a

result, demand has grown for assessing the structural integrity of structures made from these

materials. An important effort on such problems entails non-destructive evaluation methods

in thermal tomography. These methods involve an attempt to characterize structural flaws

( e. g., corrosion, cracks, etc. ) which may not be detectable by visual inspection ( see [9]

for more details ). Mathematically, these problems can be treated as domain identification

problems. Initial efforts by the authors on the inverse problems of 2-D thermal tomography

were detailed in [3], [4]. In this paper, we present a more general version of the ideas pro-

posed in [3], [4] by using the "method of mappings" (see [16], [17] ). Moreover, we report on

the successful use of the proposed method with both noisy simulated data and experimental

data from material studies in the Nondestructive Measurement Science Branch at NASA

Langley Research Center. Other studies closely related to our work have been discussed in

[9] and [10].

To explain our approach, we focus our attention on a 2-D domain identification problem.

We consider a bounded domain G in two-dimensional Eucledean space as depicted in Fig. 1.

Let P ( the region of corrosion ) be the section of the boundary where the detection of

structural flaws is to be attempted via identification of P. We assume that the boundary of
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Figure 1. Spatial domain G(q) bounded by S N P(q).

G is decomposed into two parts aG = S U P, where S is the known surface of the material.

The system behavior is governed by the 2-D diffusion equation,

au

O-"t-cAu=O inTxO (1)

with the initial and boundary conditions

U(to) : U--o on G (2)

Ou

con - f on 7"xS (3)

Ou
- 0 onTxP (4)

On

where c is a given constant representing the thermal diffusivity and where T denotes the

time interval (to, tf) during which the process is observed. In general, the external boundary

input f can not be measured directly and must also be estimated. For our efforts here we

parametrize the flux f as a function of an n0-dimensional vector q0, i. e.,

f = f(qo).

We further assume that the corrosion shape at the unknown section F of the boundary is

specified by an hi-dimensional parameter vector ql,

r = r(q,).



The system domain G = G(ql) is bounded by the partially unknown boundary S U F(ql). In

treating experimental data, it is often necessary to estimate the initial data from boundary

observations at time to. The resulting estimate will be dependent on q = (q0, ql) through

both the domain and the input flux. Hence in our presentation the initial state function is

set as

=

The system output ( i. e. the observations of the temperature ) is assumed to be on a

subset F_ of S and, mathematically, the observation is taken as

y(t,q) : u(t,q)lI:. (5)

The problem treated theoretically and computationally in this paper is that of identifying,

from output data {y}, the constant parameter vector q determining the geometrical structure

of the domain G(q_) and the boundary input function f(qo). Let q = (qo, q_) be a constant

parametrization vector among values in a given parameter set Q. Throughout this paper,

we assume that

(H-0) The admissible parameter set Q = Q0 x Q_ is a compact subset of R m x R TM.

II. DOMAIN IDENTIFICATION BY THE METHOD OF MAPPINGS

We consider a reference domain C which is a bounded open set in R 2. The reference

domain C is taken in the same topology as that of G(ql). Moreover, the domain C is bounded

by a smooth boundary OC.

a(ql),

as depicted in Fig. 2.

follows:

Then, we introduce the bijective mapping T(ql) from C into

x = T(ql) o z

Mathematically, we make the hypotheses for the mapping T(ql) as
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Figure 2. Transformation mapping from C into G(ql).

(H-l) The unknown domain G(q,) is given by

G(q,) = T(q,)(C)

with existence of F C OC such that 5 _ cOC/F = S and

r(q,)= T(q,)(F), S = T(ql)(_')----

where S is independent of ql.

If we consider a variational formulation similar to that in [13], the system dynamics ( 1 ) -

( 4 ) can be described by

+ cVu. V¢}dx = f(qo)(Ts¢)dfs for all ¢ C Hi(G(ql)) (6)

with

u(_0) = _0(q), (7)

where Vs denotes the trace operator on S and d_s is a line element on the boundary curve 5'.

Using the mapping T(ql), we may obtain the variational formulation defined on the reference

domain C.
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Proposition 1: Define

{t(t) = u(t)o T(q:).

Then the transformed system dynamics can be described by

d_2

< -_-,¢ >L2(C) +a(q:)({t(t),¢) = L(q)(¢) for all ¢ C H:(C)

with

(s)

{t(to) = u0(q) o T(ql) (de! {to(q)) (9)

where a(qx)(',') and L(q)(.) denote, respectively, a sesquilinear form on H:(C) x Hi(C) and

a linear form on Hi(C) such that, for ¢, ¢ E Hx(C)

'_'2 fc[cV¢. (VT(q:))-'(VT(ql))-IV¢ (10)a(ql)(¢,¢)

-cV¢. {det(VT(ql))}-I(VT(ql))-t(VT(ql))-x {V det(VT(ql))}¢]dz

L(q)(¢) a,=f Is f(qo)(Ts¢) [Ts{det(VT(ql))} -1] d(s (11)

respectively.

Proof: The weak formulation of ( 6 ) can be transformed into

= fs f(qo)(Ts¢)d(s for qb • Hi(C).

Setting qb= (det(VT(q:)))-l¢, we have

fod{t fo[cV{t ))-1V¢_-_¢dz + • (VT(q:))-t(_JT(q:

- cV{t. {det(VT(qx))}-l(VT(ql))-t(VT(q:))-l{_Jdet(VT(ql))}¢]dz

: -1]

from which the representation ( 8 ) follows directly.



With sometediouscalculations, onecan readily establish the following usefulconditions on

the sesquilinearform a.

Theorem 1: Suppose that the mapping T(ql) satisfies the conditions:

(C-1) For each ql E Q1, we have

T(ql) E W_(C_) x W_(_ v)

det(VT(ql)) E W_(C);

(C-2) There exists a constant 6 independent of ql such that, for each ql E Q1,

det(VT(ql)) > 6 > 0;

(C-3) There exists a constant K1 independent of ql such that, for each ql, ql E Q1,

[det(VT(ql)) - det(VT(_l))[wh(_) _< K, [q_ - _[.

Then, the sesquilinear form a(ql)(', ") satisfies the following inequalities: There exist positive

constants _, _,f_,_ such that, for ¢,¢ E g'(c), we have

a(q_)(¢,¢) > _1¢1_/1(c) _1 2- ¢IL,(o) (1_.)

[_(q_)(¢,¢)[ < /31¢IHI(_)I¢IH_(_> (13)

]a(q_)(¢,¢) - a(_)(¢, ¢)[ <_ _[ql -- ql[ I¢[HI(C)[_)[H'(O) • (14)

Proof: For convenience in discussions, the explicit form of the mapping x =

assumed to be given by

T(ql)z is

_, = ¢_(z,q_) (15)_ ¢_(z, ql)



Noting that

we obtain

0,1 (ql) 0,1 (ql)

VT(ql) = Z_'(q 1)o,_, °o-_2(q') '

(VT(ql))-t(VT(ql)) -1= {det(VT(ql))} -2

0¢2 2 a¢_ :_ _2 _ _0¢1 (ql) o___:. _a_._z )}(_z2(ql)) -_ (_z-zz_,_l)) {D¢l(ql

×

--{O,i(ql)Oz2(ql) + Ori(ql)Oz,(ql)}

For economy of notation, we define the functions

(o_._:_ o_ 20.I_I)) 2 4-(a,1(ql))

an(z,q,) = {(-_-_-2_(ql)}2+{ 0"¢'' ,]2

a12(z, ql) = a21(z, ql)

= _{__11(ql)0¢1 0¢2,-Gq_)2/ql) }(q,)+
0¢2 2 2

bl(z, q,) = -an(z, q,) f { det(VT(q,))} -- a12(z, qi ) _-_-_2{det(VT(ql))}

b_(z, q,) = -a2i(z, q,)_zl (det(VT(q,))} - a22(z,q,)_{det(VT(ql ))}.

Then the sesquilinear form ( 10 ) can be rewritten as

a(ql)(¢l,¢2) = /c[c{det(VT(q,))}-2 __, aii(z, ql) 0¢1 0¢2
id_<2 Ozj Ozi

+c{det(VT(ql))} -a __, bi(z, " __c0¢1_21dz
ql) oziW , •,i<2

The principal part of the differential operator becomes

c{det(VT(q,))} -2 _ a,j(z,q,)_,(j :
i,i<_2

c{det(VT(q,)}-' _-_z2_,q , (-_z (q,)

¢ = (¢1,6) E ._2.

(16)

(17)



This has the lower bound

Cmin{ 1 1 }al,(z,ql)' a22(z, ql) 1(12"

Under the condition (C-i), there exists a constant R such that

0¢, (is)
I¢,1< R _zj < R for i,j = 1,2.

Hence we obtain

¢

c{det(VT(qa))} -_ _ aij(z, ql)_,_j >_ _R-_I_1_> 0 for ¢" C n 2, (19)
i,3<2

which means the operator is strongly elliptic. For the second term in ( 16 ), it follows that

c {det(VT(ql))}-3 j_<_2 bj(z, qa)OO_j+2

{ a¢: a¢, }l¢= '<_ cldet(VT(ql))1-3 Ib,(z, qx)l _ + Ib2(z,ql)l Oz2 "

Under (C-l), we note that R can be chosen so that we also have

Idet(VT(ql))[ < R

o < R for{det(VT(ql))}

From ( 18 ) and ( 20 ), we obtain

i= 1,2. (20)

Ibj(z,q,)l < 4R 3 for j = 1,2.

Hence, by virtue of (C-2), it follows that

c{det(VT(qI))}-3_'bJ(z'q')-_zj 92 < _ \lOz, I + az, ] 1¢21. (21)
j<2

Consequently, from ( 19 ) and ( 21 ), we can obtain the coercivity property of the sesquilinear

form. Namely, we obtain

G(ql)(¢, ¢)
c

--> 8R 2 ( olzi

c(512R 1° + 6s)
m

86SR 2

dz 4cR3 O_zi_3 fc i_<2 [¢l dz

+ 1¢12)dz
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Hencethere exist constants a and A such that ( 12 ) holds.

To prove the boundedness of a(ql), we note that

I_(ql)(¢1,¢.)J <

+c If° {act(VT(qx11}-' E bj(z, qi) 0¢---_¢_e. •j<. 0zj [

Using ( 18 ) and (C-2), we can estimate the first integral above by

det(VT(ql))}-'
0¢1 0¢2 [ 2v/2cR 2

aij(z, q, ) dz <
i,j<2 OZj OZ i [ 6 2

I¢,1_,(c>I¢=1_,(c).

A similar bound for the second term follows from the use of the estimate in ( 21 ) and then

( 13 ) follows.

To establish the continuity property of ( 14 ), we note that, for any q_, ql E Q1 and

¢_,¢2 6 Hi(C),

I_(q,)(¢1,¢.) - o(01)(¢1,¢_)1<

Cl/c _-]_ [{det(VT(ql))}-2a'j(z'q') - {det(VT(O1))}-2a'J(z'ql)] O¢l O¢2 I,,i<2Oz i Oz, dz

I£+c E [{det(VT(q,))}-'bi(z,q,) - {det(VT(O1))}-3bj(z, ql)]j<_2

Using ( 18 ) and the condition (C-3), we may argue that

la_j(z,q_)-cL,j(z,O_)l < 4RKIIq_-qll for i,j= 1,2.

Similarly, from ( 20 ) and (C-3), we have

2RK1
{det(VT(q0)} -2 - {det(VT(ql))} -2] < 6----T- Iq_ - ql]

[{det(VT(ql))} -3 - {det(VT(_l))} -3 <
3R2K1

_6
Iql - _1.



Hence we have

Ib,(z,q_) - b,(z,#_)l <_

la,l(z, ql) - ail(z, ffl)l 0@{det(VT(ql))}

0 {det(VT(_))}+la.(z,41)l 0 {det(VT(ql))}-

+ lai2(z, ql) - a,2(z, ffl)l _ {det(VT(ql))}

0 {det(VT(_l))}+[ai2(z,_)l 0 {det(VT(ql))}-

< 12R2M Iql - qxl.

Thus, we obtain that ( 14 ) follows from

[a(ql)(¢l, ¢2)- a(ql)(¢l, ¢2)I

< 62 + 6-----T--+ _ + _ [ql - 0111¢_IH_(C)I¢_IH'(C)"

We introduce a Hilbert space

IV(T) = {¢ ¢ • L2(T;HI(C)),

endowed with the norm

-d-[ • L2(T;(H_(C))*)

1

I¢lw(_ = I¢IH,(c)dt + dt
dt (H_(C))*

where (Hi(C)) * denotes the dual space of Hi(C). Then we have the following result ( see

[13, Chapter 3, Theorem 1.2] ).

Lemma 1: In addition to the hypotheses (H-0), (H-l) and the conditions (C-l) - (C-3) in

Proposition 1, we assume that

(C-4) For each q • Q, we have

a0(q) • L'(C);

10



(C-5) For eachq0 E Q0, we have

f(qo) 6 L2(S).

Then, for each fixed q 6 Q, the system ( 8 ), ( 9 ) possesses a unique solution _(q)in PV(T).

We next formulate a boundary identification problem. In doing so, we must specify a

method of data acquisition for the parabolic system ( 8 ), ( 9 ). Let {_}['--1 be given sensor

locations on the surface S. For each observation point _ 6 S, we introduce the observation

region 5]_ C S such that

r4=NG)ns for i=l,2,...,m,

where N(_) denotes a neighborhood of the point _. Then the observation mechanism for

the system ( 8 ), ( 9 ) is given by

f/(t,q)= u(t)a(t,q) (22)

where 7-{(t): Hi(C) --* n "_ is given by

1

7-{,(t)¢ - meas(Fip) _ hi(t)(Ts¢)d_s (23)

for i = 1,2,..., m. Here the hi denote the weighting or mollifying functions for the mea-

surement equipment ( an infrared camera in the experiments discussed below ). We make

the following assumption for the observations.

(C-6) For each i= 1,2,...,m, we have hi E L°_(T x E;).

Then recalling ( See [13, Chapter 1, Theorem 3.2] ) that the trace map is continuous from

Hi(C) to L_(S), we have for _(q) e L2(T;H_(C)) that

_/(t,q) = _(t,)g(t,q)

is well defined with ._(q) E L2(T; R'). We may then define the fit-to-data criterion function

used in our identification problems by

1£,J(q) = _- 19(t, q)- Yd(t)l 2 dt (24)

11



where ya(t) denotes the given observed data. Our identification problem may be stated as

follows:

(IDP) Find q* 6 Q which minimizes d(q) given by ( 24 ) subject to ( 8 ), ( 9 ).

To insure existence of solutions to (IDP), additional assumptions on the regularity of u0

and f are required. We assume:

(C-7) The mapping q ---* _(q) is continuous from Q to L2(C).

(C-8) The mapping qo --* f(qo) is continuous from Q0 to L2(S).

Using continuity properties of the trace map _s, lower semicontinuity arguments, and the

compactness of Q, it is not difficult to prove directly that solutions of (IDP) exist. However,

these existence results will also follow directly from the approximation considerations in the

next section ( See Theorem 2 ).

III. A COMPUTATIONAL METHOD FOR DOMAIN IDENTIFICATION

In this section, we consider computational techniques for approximate identification prob-

lems. The approximation scheme we have employed is based on the use of a finite element

Galerkin approach to construct a sequence of finite dimensional approximating identification

problems. Let us choosell_° IANIN_N=ll.w_ J_=l as a set of basis functions in Hi(C). That is, for each

span{¢_ }_=1 is dense inN, {¢N}_ 1 are linearly independent and UN N N Hi(C). We choose the

approximation subspaces as

H N = span{¢_N,¢_,...,¢_}.

Then, we can define an approximate solution of ( 8 ) by

i<N

where the wN(t,q) are chosen such that,for j = 1,2,...,N,

< d_N(t'q)dt ' ¢_> +a(ql)(_tN(t'q)'¢_):L(q)(*:)

12



with

Hence,the system( 8 ), ( 9 ) canbe approximatedby solving the system

where

cN@N(t) + AN(ql)wN(t)= FN(q),

c%N(to) = (q)

[CN],i = <¢_,¢[> fori, j=l,2,...,N

[AN(ql)]ii = a(ql)(¢_,¢[) for i,j = 1,2,-..,N

[FN(q)], = L(q)(¢_) for i = 1,2,...,N

[wN(t)]i = wy(t) fori=l,2,-.-,g

[_], = <_(q),¢_> for/-- 1,2,...,N.

The corresponding output becomes

_]N(t,q) = 7LN(t)wN(t,q)

where _N(ql) is the m x N-matrix given by

[_-/N(t)]ii = 7-_,(t)¢; for i=l,2,--',m;j= 1,2,...,N.

Then we seek to solve the approximating identification problem given by:

(AIDP) s Find _N 6 Q which minimizes

1

jN(q) = 2 /:' 9N(t,q ) _ yd(t) 2 dt

subject to the approximating system ( 25 ), ( 26 ).

(25)

(26)

(27)

Since it is readily seen that the approximate solution _N(q) ( and hence the maps 9N(t, q) )

depend continuously on q, we have that solutions to these approximate problems exist for

13



each N. Our convergence results for the approximate parameter estimates are summarized

in the following theorem.

Theorem 2: Suppose that hypotheses (H-O), (H-l) and (C-1)-(C-8) hold and let _N be a

solution of the problem (AIDP) s. Then the sequence {0 N} admits a convergent subsequence

{_N_} with Ojvh ---+q" as gk ---+oo. Moreover, q* is a solution of the problem (IDP).

Proof: Since ON is a solution of the problem (AIDP) N, it is clear that

jN(oN) < jN(q) for all q (f O.

Thus, if we can argue that for any qM __+q in Q,

yN(qM) __.+y(q) in L2(T; n '_) as N,M --+ oo,

then, we can obtain the desired inequality

J(q*) < J(q) for all q E Q

by taking limits in ( 27 ). To show this, it suffices to argue that _N(qN) _ fi(q.) in

L2(T;HI(C)) as N --* ¢x_ for arbitrary sequences {a N} with qN __, q. as N --. c¢. This

follows since the output mapping 7-/is continuous from L2(T; HI(C)) to L2(T; R") ( recall

that "_s is continuous from Hi(C) to L_(S) and hl C L_(T × _) ).

To argue this convergence of _N(qN) to _(q') in L2(T; H_(C)), one can use the theory

developed in [2]. Since Theorem 1 above guarantees conditions (A),(B) and (C) of [2], and

the density of UNH N in Hi(C) guarantees that (C1) of [2] holds, we only need observe that

( 8 ), ( 9 ) can be written in the form ( in H = L2(C) )

ii(t) = A(q)u(t) + F(q) (28)

as required in [2]. The only question to address is that of whether our L as given in ( 11 ) gives

rise to an F(q) with values in L2(C)( in the notation of [2], we have H = L_(C), v = H_(C) ).

From ( 11 ) and the continuity of 7s : H_(C) --* L2(S), we see that ¢ _ L(q)(¢) is in V*.

14



Since V is dense in H = L2(O), we can extend ( by continuity ) in the usual manner so that

the weak system ( 8 ) can be equivalently written in the form ( 28 ). The desired convergence

results then follow from Theorem 2.3 of [2] along with the representations (2.2) and (2.6) of

[2].

IV. PRACTICAL IMPLEMENTATION

In order to implement the identification scheme proposed in Section 3, we need to con-

struct the mapping operator T(ql). In this section, we treat the special case of identification

of a boundary shape P(ql) characterized by a simple function. We consider the bounded

domain C(ql) in R _ as follows:

G(ql)={xER 2 10<Xl<l, 0<X2 <r(xl,ql)}

where xl --* r(xl, ql) is some parametrized real function which is assumed to characterize the

unknown part ( the possible corrosive region ) of the boundary F(ql) as depicted in Fig. 3.

We assume that the boundary of G(ql) consists of

8G(ql) = SUr(ql)

F(qx) = {x[0 _< xa < 1,x2 = r(xl,q_) with r(O, ql) = r(1, ql) = l}

O{=t=, --o,o < :_,< z}U{:_l=,= 1,o < _:_.< z}

S -- {=[0 __ x I _ 1,=2 _- 0}.

We use the reference domain C = (0, 1) x (0, l) and we introduce the mapping from C into

c(q,),

x = T(q,)(z)

xl = ¢l(z, ql) = zlx2 = ¢2(z,q_) = _ " (29)
1

Then it is easy to verify that this mapping T(ql) satisfies hypothesis (H-l). Noting that

1 "'(_'l,q,)== l

l

VT(q,) =
0 _

l

15



2:2

0

r(q_) ' xz--r(x_,q_)

/ -

S

1.0
>x I

Figure 3. The unknown spatial domain

we find that the coefficients in the sesquilinear form ( 10 ) are given by

1 -'-'_
)

( VT(ql ) )-t(VT( q, ) )-1 :=

_ "'(,1 ,qQ,,2
r(zl ,el )

-{ det(VT(ql ))}-1 (VT(q,))-'(VT(ql ))-' { V det(VT(ql )) } =

1 {(,.'(,,,,q,))_,_+ r-}(,-(-_,,_)):

_-'(-,,_)
-(zl,ql)

Furthermore, it follows that

det(VT(ql)) - r(Zl, ql)
l

Hence, the sesquilinear form a(ql) in this case is explicitly given by

_(q1)(¢,¢) = c oz, Oz, r(zl,ql) b-_O_l+

1 {(r,(z,,ql))2z _ + i2 } 0¢ 0¢
Jr (,(zl, ql )) 2 c3z20z2

+("'(zl'ql))_z_0¢ ](r(zl,ql)) 2 0z2¢ dz, dz2.

0¢ 0¢)(_Z 1 0Z 2

_,(_1.,ql)o,¢
r(Z1, ql) 0Zl

(30)

16



The linear form L(q) of ( 11 ) in this case has the representation

[ i If(zl,qo) ¢(z1,0)d,1.L(q)(¢)--.
r(Z1, ql)JO

(31)

Lemma 2: Suppose that

(C-9) For each ql E QI, r(ql) belongs to WI(0, 1);

(C-IO) There exists a constant vl such that for each ql E Q1,

r(zl, ql) _> vl > 0;

(C-11) There exists a constant u2 such that for each ql, ql 6 Q1,

Iv(z1, ql ) - r(zl, ql)lwi(o,1) < u2lql - qll.

Then the mapping T(ql) given by ( 29 ) satisfies the conditions (C-1) to (C-3) in Theorem 1.

From Lemma 2, under the conditions (C-9) to (C-11), we can apply the domain identifi-

cation techniques as outlined in the previous sections to the problem posed in this section.

In the sequel, we consider linear spline approximations of parameterized functions for r and

f. For k = 0, 1, let L(/XMh) be the set of piecewise linear splines ( see [6] for details ) with

• MI,the knot sequence/% M_ = {z/Mk}i=0 and basis elements {Bye}. Then we approximate the

unknown input function and the unknown corrosion shape function by

_61to-1 ATlo+no - 1 Mo

/((,qo)=  ,yOByO(C)+ qF OByO(C)+ Vy°BM°(c) (32)
i=0 i= ATIO i= ATfO+ no

and
2_/'1 - 1 ,ATfl+n* -- 1 MI

r(_,ql) = Z 0YIBY*(() -4- Z q_-_'BM'(_) + _-, OM'BMI(() ' (33)

i=o i= _, i=i¢I_+m

respectively. Here we assume that the _i and 8i are fixed and the ql are to be estimated. In

order to ensure the hypotheses of Lemma 2, we impose constraints on Q = Q0 x Q1 with

q2<qk<q-_rk }, k=0,1, (34)

17



where_Land 0_rkare given lower and upper bounds, respectively. The bounds C/_ and _ are

determined by vi, v2 and upper bounds of the corrosion function r and its derivative.

In the reminder of this section, we discuss computer implementation of numerical schemes

for the problem (AIDP) N. For the results reported in this paper, we solved the numerical

optimization problems using a trust region algorithm. Our trust region scheme can be briefly

stated as follows: Let {qk = (q0k, qlk)}k=l,2,--, be a sequence generated by this algorithm. At

the current point qk, we build a "model" of the cost functional ( we usually choose a quadratic

model ). Then we define a region around qk where we believe this model to be an adequate

approximation of the functional. Using this model, we seek a feasible direction so as to

guarantee a sufficient decrease in the model of cost. Once we obtain the feasible direction,

the exact cost functional is evaluated at the new point. If its value has decreased sufficiently,

this new point is accepted and updated as the next iterate, and a new trust region is selected

for the next iteration. Otherwise the new point is rejected and the current trust region is

reduced. The advantage of this algorithm is its global convergence properties;namely, this

algorithm makes it possible to obtain convergence to a critical point (optimal solution), even

from starting points ( initial guesses ) that are far away from the optimal solution. For

detailed discussions, we refer to [7] and [14].

For the implementation of the trust region algorithm, we used a Fortran software package

"OPT" created by Dr. Richard Carter of ICASE ( see [7] for details ). Test computations

were carried out on the Cray-2S at NASA Langley Research Center.

V. NUMERICAL EXPERIMENTS

Throughout both our computational and laboratory experiments, we considered corro-

sion shape identification for steel samples with corrosion like damage ( of varying size and

corrosion depth ) as depicted in Fig. 4. Since the sample material was steel, the thermal

diffusivity coefficient c in ( 1 ) was taken as c = 3.18611 x 10 -2 ((inch)2/sec). The first

part of this section is devoted to a summary of computational experiments for the purpose of

18



radius=0.125

Figure 4. Sample material with corrosion used in one of the experiments

better understanding our computational method. This is followed by a discussion in which

the feasibility and validity of our algorithm using laboratory data is demonstrated.

V.1. Computational Experiments with Simulated Data

In our numerical experiments, we used a test example constructed as follows: We chose

a 'true' parameter vector q° = (q_, q_') E Q, generated the corresponding solution numeri-

cally, added random noise, and then used this as "data" for our inverse algorithm. In this

procedure, the dimensions of the unknown parameter vectors were taken as dim(qo) = no =

5, dim(q1) = nl = 5. The corresponding numbers of knot sequences in ( 32 ) and ( 33 )

were chosen as M0 = 4,/17/0 = 0 ( i. e., all the coefficients for ] were to be estimated ),

M1 = 32,/15/1 = 14, respectively. The value of the true parameters were chosen as

q_) = [1.8, 1.8, 1.8, 1.8, 1.8],

q_' = [0.0417468, 0.0289693, 0.0250000, 0.0289693, 0.0417468].

Figure 5 depicts the true curve approximated by piecewise linear splines. In order to guar-

antee the conditions (C-9) - (C-11), the constrained sets Q0 and Q1 defining Q in ( 34 ) were

taken as

015<  <025,  =1,2,3,4,5 }

and

Q,:{q, cRSl 0.01_< q_ _< 0.055, i:1,2,3,4,5 },
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Figure 5. The corrosion shape and the approximating linear spline curve

respectively. The initial state function was preassigned as

_o(q,:r,) = 0 in G(ql).

Then we have

6,o(q) = _o(Z) o T(ql)

= 0 in C.

To discretize the system model by a ( bilinear spline ) finite element method, the reference

domain C is divided into a finite number of elements {ek}_=l (g < N) and a number

N of nodes defined by {zi (z_, i _v= z2)}i=l are selected in C. Each element is preassigned

as an axiparaUel rectangle with nodes at the vertices as shown in Fig. 6. The number

of finite elements and nodes in the numerical experiments reported on here were set as

Figure 6. The decomposition of finite elements in C
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K = 128 (= 32 x 4) and N = 165 (= 33 × 5), respectively. The restriction of ¢_ to any

element ek is given by a bilinear polynomial of the form,

, (10)= t,ai, k -4- + ai, k z2)

for z = (zl, z2) 6 ek k= l,2,...,K and i = 1,2,..-,N.

The coefficients " (zj)_lai,k t can be chosen such that each polynomial form satisfies the properties

of a piecewise bilinear basis function (see e.g., [1, Chapter 5] ). Integration in the element

matrices C N, AN(ql) and the element vector FN(q) can be computed numerically by a Gauss-

Legendre formula. Thus, the state model ( 8 ), ( 9 ) can be solved numerically by an implicit

scheme with respect to discrete timer = to+ih (i = 0,1,...,mr) where h = (tf-to)/mt. The

initiai and final time, and number of time divisions were taken as to = 0., t I = 10. and mt =

80 in our computations. To obtain the output, the weighting functions in the measurement

operator were given by

f 0. for i=l,2,-..,mand0.<t<l.
hi(t)

1. for i=l,2,...,mandl.<t<4.

The number of observation points was set as m = 25 and sensors are located at

(i-1 )_;=(zl,z2)= -_+0.125, 0 for i= 1,2,...,25.

For these test example computations, simulated data {Yd(t)} were generated by first

solving the finite element model ( 25 ), ( 26 ) with the same number ( as used in the model

solution ) of finite elements and nodes. Random noise at various levels from 0% to 500£

was then added to the numerical solution, thereby producing simulated noisy "data" for the

algorithm.

The evaluations of the cost functional jN, its gradient VqJ N and its Hessian matrix

are the computationally expensive parts of our algorithm since these involve integration

of the states wN(t,q) with respect to time t over 7". This can be accomplished by using

the trapezoidal rule in the Newton-Cotes formula. The gradient and the corresponding
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Hessian are computed using a forward difference scheme and the BFGS secant update with

safeguarding Hessian approximation ( see [7] ). In each experiment, the optimization routine

was implemented using rectangular trust regions.

Table 1 reports the estimated parameter results for the data without noise and with

5, 10, 15 and 20% relative noise. Figures 7 - 11 represent the value of cost function, and

the estimated parameter functions ](Zl, q0) and f(zl, ql) which correspond to the estimated

boundary input and boundary (corrosion) shape, respectively. These and other test compu-

tations ( see also [4] ) suggest that the methods perform well with reasonable levels of noise

( 20% or less ). Tests with higher levels of noise ( e. g. 50% ) produced results indicating

less than satisfactory recovery of reasonable values for the parameters.

Table 1. True value and estimated values of q

True Value

o.18oo
q_ 0.1800

qo3 0.1800

qo o.18oo
qo o.18oo
qx_ 0.04175

0.02897
q_ 0.02500

qx4 0.02897

q_ 0.04175

J(q)

Noise Free 5% Noise 10% Noise 15% Noise 20% Noise

iter = 61 iter = 18 iter = 17 iter = 15 iter=9

0.1800 0.1813 0.1820 0.1770 0.1857

0.1800 0.1787 0.1778 0.1809 0.1738

0.1799 0.1832 0.1847 0.1859 0.2038

0.1800 0.1783 0.1777 0.1797 0.1721

0.1800 0.1823 0.1826 0.1799 0.1879

0.04165 0.04403 0.04479 0.04444 0.04156

0.02896 0.02814 0.02885 0.03195 0.03869

0.02509 0.02571 0.02486 0.02755 0.03813

0.02894 0.02749 0.02698 0.02730 0.03928

0.04166 0.04524 0.04591 0.04668 0.04357

2.473 3.626 1.490 3.351 5.899

xl0 -s X10-2 xl0-1 X10-1 xl0-_

( iter = No. of iteration )

V.2. Computational Results Using Experimental Data

In this subsection, we report some of the results of using our estimation procedures with

experimental data. A schematic of the experimental system is illustrated in Fig. 12. All

22



©

c_
>

co
0

(D

6

5

4

3

2

0
0

I

10

I

2O 30

Iteration

I I I

40 50 60

----- 0.20

_- 0.10 _

0.00
0.0

I

0.2

True Boundary Input
Initial Guesses
Estimate (Iteration 61)

I I I

O.4 0.6 0.8

Z 1

I

I

I

I
1.0

0.12

0.10

_" 0.08
N

0.06

0.O4

0.02

0.00

True Shape
Initial Guesses

Estimate (Iteration 61)

F- I
I

I I I I I I I

0.40 0.50 0.60

Z 1

Figure 7. True function and estimated function (Noise Free)

23



O

if)
O

(D

5

4

3M2

1

0
0 4

8 12 16

Iteration

._ O.2O ........... True Boundary input
........ initial Guesses

--.... __ Estimate (iteration 18) i
.... _.__j

0.00 0.6 0.8 1.0
0.0 0.2 0.4

Z 1

0.12[ _ True Shape

0.10 _- ...... Initial Guesses......... Estimate (iteration 18)

-_ 0 08 /
o

0.06 -------_ Icr i
_c_ 0.04 l

0.02 L----o .00 --L--------___
0.40 0.50 0.60

Z 1

Figure 8. True function and estimated {unction (5% Noise)

_4



6

5
@

-_ 4
_D

> .3
co
o 2

O
1

0
0

R I I I I t I

4 8 12 16

Iteration

_- 0.20
N

o50.10

0.00
0.0

True Boundary Input
InRial Guesses

......... Estimate (Iteration 17)
I I I I

0.2 0.4 0.6 0.8

I

I

I

I
1.0

Z 1

0.12

0.10

0.08
N

0.06
[y

"--d"0.04

0.02

0.00

True Shape
Initial Guesses

......... Estimate (Iteration 17)

.... ',
I

- I

I I I I I )

0.40 0.50 0.60

Z 1

Figure 9. True function and estimated function (10% Noise)

25



6

5
(t)

4
©

> 3

o 2
CP

1

0
0

I L l I , I I I

2 4 6 8 10 12 14

Iteration

-_ 0.20

_0.I0

'4--

I .... ]

True Boundary Input i
Initial Guesses J

.......... Estimate (Iteration 15) '
1 1 I I I0.00

0.0 0.2 0.4 0.6 0.8 1.0

Z 1

N

O-
"-d"

0.12

0.10

0.08

0.06

O.04

0.02

0.00

True Shape
Initial Guesses

......... Estimate (iteration 15)

I I I I I

0.40 0.50 0.60

Z 1

Figure 10. True function and estimated function (15% Noise)

26



6

5
(D

n 4
o

> .5
O3
o 2

(.9
1

0

m

<
I I I 1 I I l I

0 1 2 5 4 5 6 7 8

Iteration

I

9

0.20

c_° 0.10

0.00
0.0

- True Boundary Input
....... Initial Ouesses

.......... Estimate (Iteration 9)
I I L J

0.2 0.4 0.6 0.8 1.0

Z 1

0.12

0.10

0.08
b,d
- 0.06

o-

_'004

0.02

True Shape
Initial Guesses

......... Estimate (Iteration 9)

0.00 _ I _ 1 t
0.40 0.50 0.60

Z 1

Figure 11. True function and estimated function (20% Noise)

27



i THERMAL

SOURCE __/

IINFRA-REDL//

I

p

IV'D Ot !DIGITIzE "FOMP T RI

REMOTE

SAMPLE

Figure 12. Block diagram of experimental setup

experiments were carried out in the laboratories of the Instrument Reseach Division, Nonde-

structive Measurement Science Branch, NASA Langley Research Center. The experimental

data consisted of surface temperature distributions for a four second period after a thermal

source ( heat lamps ) was provided to a sample. In a series of experiments, two types of

material samples were used : one type of sample fabricated to simulate corrosion similar to

that shown in Fig. 4 and another type of sample fabricated to simulate no corrosion ( an

unflawed rectangular sample 0.055 inch by one inch ). The measured experimental data are

graphed in Fig. 13.

As readily seen in Fig. 13, the unknown boundary flux f is a time-varying function,

especially in a neighborhood of the initial time ( this is mainly due to the measurement

apparutus for the heat source ), whereas, in our algorithm, the boundary input is assumed

to be a time-invariant function. To handle this discrepancy, noting that the time evolution

of the experimental data is linearly increasing after an appropriate time period, we set the

initial time as to = 1.875 sec. Figure 14 depicts the initial time to and the time evolution of

the experimental data ( for the sample with corrosion ) at the midpoint x -- 0.5.
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(a) with corrosion

(b) without corrosion

Figure 13. Experimental data ( surface temperature )
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An important feature of the experimental data as depicted in Fig. 15 is that the magnitude

of noise is rather high. As demonstrated in the computational experiments of the previous

section, this could pose difficulties for our estimation procedures. One possible method for

alleviating this dificculty is to use a data smoothing technique. To this end, we used ICSSCU

( the IMSL version ) which implements a cubic spline data smoothing. Figure 15 compares

the smoothed data and the original experimental data at time t = to ( = 1.875 ).

Another important question which arises in using our algorithm is that of how to preassign

the initial data t0(q). We only know the surface data _/s_o(= "ts_o) from the boundary

surface measurement at time t -- to. One possible solution is to approximate the initial state

by the steady state solution of

with the boundary conditions

AT=0 inG(ql)

0-_
- 0 on r(ql)

On

= onS,

3O
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Figure 15. The smoothed data vs. experimental data at time t = to

( sample with corrosion )

where za(to) is the observed surface data. We used a finite element method to solve this

steady state problem for _(qi) and then set uo(q) = u(qi).

Inverse problems such as we have considered here may exhibit a lack of continuous de-

pendence of the estimated parameters on the data. This often leads to serious dificulties in

computational efforts. It is helpful to use a regularization technique. To this end, for the

computer implementation of our algorithm using experimental data, we added a regulariza-

tion term to the cost function, i. e.,

= j_(q) + ,7 dra_(q_)jN(q)
C_(0,i)

(seee.g.[il],[i5]).Theresultsofourestimationproceduresforonesetofexperiments

( the sample with corrosion had dimensions as shown in Fig. 4 ) are given in Table 2, Fig. 16

and Fig. 17. SimAlar results for a second set of experiments for different material samples are

depicted in Figures 18 and 19 ( in this case, a sample with actual dimensions 0.09375 × 1.

inch and corrosion radius 0.25 inch was used ). Note that in this case our procedures were

able to locate a "corrosion" that was not centered in the sample.
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Table 2. True value and estimated values of qo

q0_ 0.2244 0.2244

q_ 0.2892 0.2939

q_) 0.2267 0.2316

q4 0.2551 0.2554

q0s 0.1958 0.1952

q_ 0.02718 0.04388

q_ 0.03422 0.03662

qla 0.04128 0.03544

q_ 0.05135 0.03778

q_ 0.03142 0.04404

J(q)

[ With corrosion Without corrosion

0. 10. 0. 10.

0.1387 0.1351

0.3430 0.3462

0.2451 0.2521

0.2719 0.2683

0.3623 0.3653

0.04466 0.05500

0.05500 0.05500

0.05500 0.05500

0.05500 0.05500

0.05500 0.05500

2.215 2.252 3.222 3.222

xl0 -1 xl0 -1 xl0 -1 xl0 -1

VI. CONCLUDING REMARKS

In the last section we summarized some of our findings using the methods in this paper

with laboratory data. To date, we have used 7 different samples of material ( all of steel );

at least 17 different experiments were carried out and for each of these experiments we

used our estimation packages with the resulting data. The several results reported in detail

above are representative of our findings. In all cases, the algorithm performed as well as or

better than it did in the examples given above. We believe this provides rather conclusive

evidence that ( i ) structual flaws of this nature can be successfully detected using thermal

methods, and ( ii ) the mathematical and computational ideas presented in this paper can

be effectively used in determining the existence, location, and nature of such material flaws.

We are currently pursuing both experimental and computational investigations to further

refine our methods as well as to test other types of materials ( aluminium, etc ) and flaws

( e. g. delaminations ) with regard to ease and accuracy in detection and characterization

of flaws using thermal based methods.
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The theoretical aspects of this paper can be quite properly considered as a nontrivial

extension of the theory developed in [3], [4]. Here we present a very general theory employing

the so-called "method of mappings" prominently used in optimal shape design problems ( see

[16] and [17] ). The theory allows us to treat estimation of unknown boundary segments in

quite general domains. These domains include as a special case ( as is seen in Section IV )

the types of domains treated in [3], [4]. While these more restrictive domains are precisely

the ones needed to treat the experiments reported on in Section V, the theory of [3], [4] is

not adequate for some of our current and ongoing investigations of material samples ( with

delaminations and holes ). Moreover, in our theoretical formulation above we assume that

the input flux as well as the boundary shape requires identification. This was done because

we found it impossible to accurately measure the flux as well as the surface temperature in

experiments with test samples. The theory of [3], [4], which assumes that the flux is given, is

not adequate to treat the experimental examples discussed in Section V. Finally, the model

used in [3], [4] includes a boundary transfer coefficient term as well as a radiative loss term in

the heat equation. We found experimentally that both of these terms appear to be relatively

unimportant so we have neglected them in the current model and theoretical development.

The theoretical developments above rely heavily on the framework given in [2]. Recently,

Lamm has, in [12], developed an extension of the results in [2] which could also be used to

treat the domain identification problems formulated in Sections I and II. The theory in [12]

involves parameter dependent state spaces H(p) as well as a fixed reference Hilbert space H.

The example in Section 5 of [12] indicates how the theory developed there could be applied

to problems involving unknown domains. Briefly, one has a parameterized domain f2p ( anal-

ogous to our G(ql) above ) and corresponding state spaces H(p) where the norms in general

also depend on the unknown parameters. The treatment of [12] involves heavy reliance on

the properties of a "space-changing" map q,(_3, p) : H(p) _ H([9) with 3'(/3, p) = 3't(/3)3'e(p)

where 7e and 7t are "extension" and "truncation" maps satisfying certain regularity condi-

tions. ( When applied to our problems, these are cordinate change maps. ) In [12], the focus
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is on the relationship betweenH(p) and H(/_) through the maps 7, 7, and % as opposed

to one on the relationship between the parameter dependent spaces and a fixed reference

space. The developments in [12] could offer some theoretical advantages ( the computational

procedures would still best be carried out as presented above in Sections III and IV ) in

that conditions ( 19. ), ( 13 ) and ( 14 ) of Theorem 1 above can be verified directly in the

variable domain formulation of the problem. In this case one trades the tedium involving the

coefficients of the transformed system (8), ( 9 ) above for some tedium involving changing

( but equivalent ) norms and verification of regularity properties for the "space-changing"

maps ( conditions related to (C-1)-(C-3) of our Theorem 1 above ). We refer the interested

reader to the example of Section 5 of [12] for details.
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